Cellulose degradation by oxidative enzymes
نویسندگان
چکیده
Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs), cellobiose dehydrogenases (CDHs) and members of carbohydrate-binding module family 33 (CBM33). PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.
منابع مشابه
Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose
The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMOs) that carry out oxidative cleavage of polysaccharides. These very powerful enzymes are abundant in fungal saprotrophs. LPMOs require activation by electrons that can be provided by cellobiose dehydrogenases (CDHs), but as some fungi lack CDH-encoding genes, o...
متن کاملFungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family
Our understanding of fungal cellulose degradation has shifted dramatically in the past few years with the characterization of a new class of secreted enzymes, the lytic polysaccharide monooxygenases (LPMO). After a period of intense research covering structural, biochemical, theoretical and evolutionary aspects, we have a picture of them as wedge-like copper-dependent metalloenzymes that on red...
متن کاملFast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes
BACKGROUND Enzymatic breakdown of lignocellulosic biomass is a known bottleneck for the production of high-value molecules and biofuels from renewable sources. Filamentous fungi are the predominant natural source of enzymes acting on lignocellulose. We describe the extraordinary cellulose-deconstructing capacity of the basidiomycete Laetisaria arvalis, a soil-inhabiting fungus. RESULTS The L....
متن کاملExtracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium.
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in ligno...
متن کاملExpression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates
White-rot fungi secret a large number of hydrolytic and oxidative enzymes for degradation of lignocellulosic material. The sequencing of the genome of the white-rot fungus Phanerochaete chrysosporium has facilitated the characterization of its complete extracellular proteome. P. chrysosporium was grown on liquid medium, containing glucose, cellulose or wood chips as the carbon source, and also ...
متن کامل